Decomposition horizons: from graph sparsity to model-theoretic dividing lines

Author:

Braunfeld Sam,Nešetřil Jaroslav,Ossona de Mendez Patrice,Siebertz Sebastian

Abstract

Low treedepth decompositions are central to the structural characterizations of bounded expansion classes and nowhere dense classes, and the core of main algorithmic properties of these classes, including fixed-parameter (quasi) linear-time algorithms checking whether a fixed graph $F$ is an induced subgraph of the input graph $G$. These decompositions have been extended to structurally bounded expansion classes and structurally nowhere dense classes, where low treedepth decompositions are replaced by low shrubdepth decompositions. In the emerging framework of a structural graph theory for hereditary classes of structures based on tools from model theory, it is natural to ask how these decompositions behave with the fundamental model theoretical notions of dependence (alias NIP) and stability. In this work, we prove that the model theoretical notions of NIP and stable classes are transported by decompositions. Precisely: Let $\mathscr C$ be a hereditary class of graphs. Assume that for every $p$ there is a hereditary NIP class $\mathscr D_p$ with the property that the vertex set of every graph $G\in\mathscr C$ can be partitioned into $N_p=N_p(G)$ parts in such a way that the union of any $p$ parts induce a subgraph in $\mathscr D_p$ and $\log N_p(G)\in o(\log |G|)$. We prove that then $\mathscr C$ is (monadically) NIP. Similarly, if every $\mathscr D_p$ is stable, then $\mathscr C$ is (monadically) stable. Results of this type lead to the definition of decomposition horizons as closure operators. We establish some of their basic properties and provide several further examples of decomposition horizons.

Publisher

Masaryk University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3