On ordered Ramsey numbers of matchings versus triangles

Author:

Balko Martin,Poljak Marian

Abstract

For graphs $G^ <$ and $H^<$ with linearly ordered vertex sets, the \emph{ordered Ramsey number} $r_<(G^<,H^<)$ is the smallest $N \in \mathbb{N}$ such that any red-blue coloring of the edges of the complete ordered graph $K^<_N$ on $N$ vertices contains either a blue copy of~$G^<$ or a red copy of $H^<$. Motivated by a problem of Conlon, Fox, Lee, and Sudakov (2017), we study the numbers $r_<(M^<,K^<_3)$ where $M^<$ is an $n$-vertex ordered matching. We prove that almost all $n$-vertex ordered matchings $M^<$ with interval chromatic number 2 satisfy $r_<(M^<,K^<_3) \in \Omega((n/\log n)^{5/4})$ and $r_<(M^<,K^<_3) \in O(n^{7/4})$, improving a recent result by Rohatgi (2019). We also show that there are $n$-vertex ordered matchings $M^<$ with interval chromatic number at least 3 satisfying $r_<(M^<,K^<_3) \in \Omega((n/\log n)^{4/3})$, which asymptotically matches the best known lower bound on these ordered Ramsey numbers for general $n$-vertex ordered matchings.

Publisher

Masaryk University Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On ordered Ramsey numbers of matchings versus triangles;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

2. Directed graphs without rainbow triangles;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3