Author:
Hernández-Ortiz Rangel,Knauer Kolja,Montejano Luis,Scheucher Manfred
Abstract
J.-P.\ Roudneff conjectured in 1991 that every arrangement of $n \ge 2d+1\ge 5$ pseudohyperplanes in the real projective space $\mathbb{P}^d$ has at most $\sum_{i=0}^{d-2} \binom{n-1}{i}$ \emph{complete cells} (i.e., cells bounded by each hyperplane). The conjecture is true for $d=2,3$ and for arrangements arising from Lawrence oriented matroids. The main result of this manuscript is to show the validity of Roudneff's conjecture for $d=4$. Moreover, based on computational data we conjecture that the maximum number of complete cells is only obtained by cyclic arrangements.
Reference14 articles.
1. Supplemental source code and data. https://github.com/manfredscheucher/supplemental-roudneff4.
2. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented Matroids, 2nd edition, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2 edition, 1999.
3. C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Mathematische Annalen, 64:95-115, 1907.
4. L. Finschi. Webpage: Homepage of oriented matroids. https://finschi.com/math/om/?p=catom&filter=nondeg.
5. L. Finschi. A graph theoretical approach for reconstruction and generation of oriented matroids. PhD thesis, ETH Zürich, Switzerland, 2001.