Author:
Duron Julien,Havet Frédéric,Hörsch Florian,Rambaud Clément
Abstract
The {\it inversion} of a set $X$ of vertices in a digraph $D$ consists of reversing the direction of all arcs of $D\langle X\rangle$. We study $\sinv'_k(D)$ (resp. $\sinv_k(D)$) which is the minimum number of inversions needed to transform $D$ into a $k$-arc-strong (resp. $k$-strong) digraph and $\sinv'_k(n) = \max\{\sinv'_k(D) \mid D~\mbox{is a $2k$-edge-connected digraph of order $n$}\}$. We show : (i) $\frac{1}{2} \log (n - k+1) \leq \sinv'_k(n) \leq \log n + 4k -3$ for all $n \in \mathbb{Z}_{\geq 0}$; (ii) for any fixed positive integers $k$ and $t$, deciding whether a given oriented graph $\vec{G}$ satisfies $\sinv'_k(\vec{G}) \leq t$ (resp. $\sinv_k(\vec{G}) \leq t$) is NP-complete ; (iii) if $T$ is a tournament of order at least $2k+1$, then $\sinv'_k(T) \leq \sinv_k(T) \leq 2k$, and $\frac{1}{2}\log(2k+1) \leq \sinv'_k(T) \leq \sinv_k(T)$ for some $T$; (iv) if $T$ is a tournament of order at least $28k-5$ (resp. $14k-3$), then $\sinv_k(T) \leq 1$ (resp. $\sinv_k(T) \leq 6$); (v) for every $\epsilon>0$, there exists $C$ such that $\sinv_k(T) \leq C$ for every tournament $T$ on at least $2k+1 + \epsilon k$ vertices.
Reference24 articles.
1. Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking and clustering. Journal of the ACM, 55(5), 2008.
2. Noga Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics, 20:137-142, 2006.
3. Noga Alon, Emil Powierski, Michael Savery, Alex Scott, and Elizabeth Wilmer. Invertibility of digraphs and tournaments, 2022.
4. Guillaume Aubian, Frédéric Havet, Florian Hörsch, Felix Klingelhoefer, Nicolas Nisse, Clément Rambaud, and Quentin Vermande. Problems, proofs, and disproofs on the inversion number, 2022.
5. Jœrgen Bang-Jensen and Anders Yeo. Making a tournament k-arc-strong by reversing or deorienting arcs. Discrete Applied Mathematics, 136(2):161-171, 2004. The 1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the minimum number of inversions to make a digraph k-(arc-)strong;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023