Partition Universality for Hypergraphs of Bounded Degeneracy and Degree

Author:

Allen Peter,Böttcher Julia,Cecchelli Domenico

Abstract

We consider the following question. When is the random $k$-uniform hypergraph $\Gamma=G^{(k)}(N,p)$ likely to be $r$-partition universal for $k$-uniform hypergraphs of bounded degree and degeneracy? That is, for which~$p$ can we guarantee asymptotically almost surely that in any $r$-colouring of $E(\Gamma)$ there exists a colour $\chi$ such that in $\Gamma$ there are $\chi$-monochromatic copies of all $k$-uniform hypergraphs of maximum vertex degree $\Delta$, degeneracy at most $D$, and $cN$ vertices for some constant $c=c(D,\Delta)>0$. We show that if $\mu>0$ is fixed, then $p\ge N^{-1/D+\mu}$ suffices for a positive answer if $N$ is large. On the other hand, for $p=o(N^{-1/D})$ we show that $G^{(k)}(N,p)$ is likely not to contain some graphs of maximum degree $\Delta$ and degeneracy $D$ on $cN$ vertices at all. This improves the best upper bounds on the minimum number of edges required for a $k$-uniform hypergraph to be partition universal (even for $k=2$) and also for the size-Ramsey problem for most $k$-uniform hypergraphs of bounded degree and degeneracy.

Publisher

Masaryk University Press

Reference27 articles.

1. Allen, Peter, and Julia Böttcher. 2022. "Partition Universality for Graphs of Bounded Degeneracy and Degree." arXiv Preprint arXiv:2211.15819.

2. Allen, Peter, Julia Böttcher, Ewan Davies, Eng Keat Hng, and Jozef Skokan. n.d. "A Sparse Hypergraph Blow-up Lemma."

3. Allen, Peter, Julia Böttcher, and Domenico Mergoni Cecchelli. n.d. "Partition Universality for Hypergraphs of Bounded Degeneracy and Degree." To Appear.

4. Allen, Peter, Olaf Parczyk, and Vincent Pfenninger. 2021. "Resilience for Tight Hamiltonicity." arXiv Preprint arXiv:2105.04513.

5. "On Size Ramsey Number of Paths, Trees, and Circuits. I." J;Beck;Graph Theory,1983

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partition Universality for Hypergraphs of Bounded Degeneracy and Degree;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3