Author:
Rué Juanjo,Spiegel Christoph
Abstract
We study an analogue of the Ramsey multiplicity problem for additive structures, establishing the minimum number of monochromatic $3$-APs in $3$-colorings of $\mathbb{F}_3^n$ and obtaining the first non-trivial lower bound for the minimum number of monochromatic $4$-APs in $2$-colorings of $\mathbb{F}_5^n$. The former parallels results by Cumings et al.~\cite{CummingsEtAl_2013} in extremal graph theory and the latter improves upon results of Saad and Wolf~\cite{SaadWolf_2017}. Lower bounds are notably obtained by extending the flag algebra calculus of Razborov~\cite{razborov2007flag}.
Reference15 articles.
1. P. J. Cameron, J. Cilleruelo, and O. Serra. On monochromatic solutions of equations in groups. Revista Matemática Iberoamericana, 23(1):385-395, 2007.
2. David Conlon. On the Ramsey multiplicity of complete graphs. Combinatorica, 32:171-186, 2012.
3. J. Cummings, D. Král', F. Pfender, K. Sperfeld, A. Treglown, and M. Young. Monochromatic triangles in three-coloured graphs. Journal of Combinatorial Theory, Series B, 103(4):489-503, 2013.
4. B. A. Datskovsky. On the number of monochromatic Schur triples. Advances in Applied Mathematics, 31(1):193-198, 2003.
5. P. Erdős. On the number of complete subgraphs contained in certain graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl, 7(3):459-464, 1962.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. New Ramsey Multiplicity Bounds and Search Heuristics;Foundations of Computational Mathematics;2024-08-26