A lower bound for set-colouring Ramsey numbers

Author:

Aragão Lucas,Collares Maurício,Marciano João,Martins Taísa,Morris Robert

Abstract

The set-colouring Ramsey number $R_{r,s}(k)$ is defined to be the minimum $n$ such that if each edge of the complete graph $K_n$ is assigned a set of $s$ colours from $\{1,\ldots,r\}$, then one of the colours contains a monochromatic clique of size $k$. The case $s = 1$ is the usual $r$-colour Ramsey number, and the case $s = r - 1$ was studied by Erd\H{o}s, Hajnal and Rado in 1965, and by Erd\H{o}s and Szemerédi in 1972. The first significant results for general $s$ were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstra\"ete, who showed that $R_{r,s}(k) = 2^{\Theta(kr)}$ if $s/r$ is bounded away from $0$ and $1$. In the range $s = r - o(r)$, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) colouring, and use it to determine $R_{r,s}(k)$ up to polylogarithmic factors in the exponent for essentially all $r$, $s$ and $k$.

Publisher

Masaryk University Press

Reference10 articles.

1. N. Alon and V. Rödl, Sharp bounds for some multicolor Ramsey numbers, Combinatorica, 25 (2005), 125-141.

2. D. Conlon, J. Fox, X. He, D. Mubayi, A. Suk and J. Verstraëte, Set-coloring Ramsey numbers via codes, arXiv:2206.11371

3. D. Conlon, J. Fox, X. He, D. Mubayi, A. Suk and J. Verstraëte, Hypergraph Ramsey numbers of cliques versus stars, Random Structures Algorithms, to appear, arXiv:2210.03545

4. D. Conlon, J. Fox and B. Sudakov, Recent developments in graph Ramsey theory, Surveys in Combinatorics, 424 (2015), 49-118.

5. P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci., 16 (1965), 93-196.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tower gaps in multicolour Ramsey numbers;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3