Development and Validation of a Machine Learning System to Identify Reflux Events in Esophageal 24-Hour pH/Impedance Studies

Author:

Zhou Margaret J.1ORCID,Zikos Thomas2,Goel Karan3,Goel Kabir4,Gu Albert3,Re Christopher3,Florez Rodriguez David Jose1,Clarke John O.1,Garcia Patricia1,Fernandez-Becker Nielsen1,Sonu Irene1,Kamal Afrin1,Sinha Sidhartha R.1ORCID

Affiliation:

1. Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA;

2. Kaiser Foundation Hospitals, Pasadena, California, USA;

3. Department of Computer Science, Stanford University, Stanford, California, USA;

4. University of California Berkeley College of Engineering, Berkeley, California, USA.

Abstract

INTRODUCTION: Esophageal 24-hour pH/impedance testing is routinely performed to diagnose gastroesophageal reflux disease. Interpretation of these studies is time-intensive for expert physicians and has high inter-reader variability. There are no commercially available machine learning tools to assist with automated identification of reflux events in these studies. METHODS: A machine learning system to identify reflux events in 24-hour pH/impedance studies was developed, which included an initial signal processing step and a machine learning model. Gold-standard reflux events were defined by a group of expert physicians. Performance metrics were computed to compare the machine learning system, current automated detection software (Reflux Reader v6.1), and an expert physician reader. RESULTS: The study cohort included 45 patients (20/5/20 patients in the training/validation/test sets, respectively). The mean age was 51 (standard deviation 14.5) years, 47% of patients were male, and 78% of studies were performed off proton-pump inhibitor. Comparing the machine learning system vs current automated software vs expert physician reader, area under the curve was 0.87 (95% confidence interval [CI] 0.85–0.89) vs 0.40 (95% CI 0.37–0.42) vs 0.83 (95% CI 0.81–0.86), respectively; sensitivity was 68.7% vs 61.1% vs 79.4%, respectively; and specificity was 80.8% vs 18.6% vs 87.3%, respectively. DISCUSSION: We trained and validated a novel machine learning system to successfully identify reflux events in 24-hour pH/impedance studies. Our model performance was superior to that of existing software and comparable to that of a human reader. Machine learning tools could significantly improve automated interpretation of pH/impedance studies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Gastroenterology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3