Positive mental health in work and private life: Extending modeling to a data-driven approach

Author:

Jaotombo Franck F.

Abstract

Cette recherche vise à étendre le concept de la Santé Mentale Positive (PMH) (Keyes, 2002) conçu comme épanouissement, d’un contexte général aux contextes spécifiques professionnel et privé. D’un point de vue conceptuel, à la lumière de la conception intégrée d’équilibre vie privée & vie professionnelle (Sirgy & Lee, 2018), nous explorons l’éventualité que les structures factorielles de la PMH entre vie privée et vie professionnelle puissent être corrélées, mais distinctes. En termes de méthodologie, nous intégrons plusieurs approches. Nous analysons le construit multidimensionnel de PMH en intégrant simultanément un facteur général et des facteurs spécifiques. Pour ce faire, nous nous appuyons sur une approche à la fois centrée sur les variables et sur les personnes, en tenant simultanément compte des contextes au travail et hors travail. Deux différentes études sont menées – d’échantillons respectifs de taille n=304 et n=1066 – pour explorer la structure factorielle de ce construit étendu et intégré de PMH. Pour chacune d’entre elles, une modélisation en équations structurelles exploratoires bifactorielle (Bi-ESEM) offre le meilleur ajustement aux données. Une analyse en classe latente permet d’explorer les différentes classes de PMH illustrant chacune une typologie différente de PMH dans un contexte professionnel-privé. Une méthode d’apprentissage supervisé (arbres de classification) est utilisée pour diagnostiquer efficacement l’attribution des individus à chaque classe. En s’appuyant sur ces résultats pour étudier le fonctionnement psychosocial, nous montrons qu’il existe une différence significative entre les profils, où ceux qui sont épanouis dans tous les contextes incarnent les niveaux les plus bas de risques psychosociaux, alors que ceux qui languissent au travail en incarnent les niveaux les plus élevés. Nous en concluons que la distinction entre PMH en contexte de travail et PMH hors travail éclaire des aspects du construit qui ne sont pas disponibles dans son expression générale seule. L’apprentissage supervisé (Machine Learning) s’avère être un outil fiable et efficace de diagnostic et de prédiction des classes de PMH, démontrant une importante performance prédictive (Taux de classification = 0.90, Kappa = 0.86).

Publisher

CAIRN

Reference74 articles.

1. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR)

2. Sick but yet at work. An empirical study of sickness presenteeism;Aronsson G.;Journal of Epidemiology & Community Health,2000

3. Exploratory Structural Equation Modeling;Asparouhov Tihomir;Structural Equation Modeling: A Multidisciplinary Journal,2009

4. Healthcare Workers: Occupational Health Promotion and Patient Safety;Baylina Pilar;Journal of Medical Systems,2018

5. Florescimento no trabalho: Revisão integrativa da literatura;Bedin Lívia Maria;Revista Psicologia: Organizações e Trabalho,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3