Influence of Tic on Density and Microstructure of Al2O3 Ceramics Doped with Nb2O5 and Lif

Author:

da Silveira Pedro Henrique Poubel Mendonça,Gomes Alaelson Vieira

Abstract

Ceramic matrix composites are widely studied in the ballistic sector due to their high hardness, fracture toughness, and improved ballistic performance in multilayer shielding systems. However, the presence of dopants in ceramics can pose challenges during processing and potentially compromise the final properties of the sintered material. This study focused on the ceramic processing of Al2O3-based ceramic matrix composites by adding 4 wt.% Nb2O5 (niobium oxide), 0.5 wt.% LiF (lithium fluoride), and 38.5 wt.% TiC (titanium carbide). The composites were produced using cold uniaxial pressing and conventional sintering at 1400 °C for 3 h. The composites were characterized using Archimedes’ principle and scanning electron microscopy (SEM). The results revealed that the samples to which TiC was added exhibited low initial densities, indicating that the applied pressure of 50 MPa during cold pressing was insufficient to adequately densify the green bodies. Moreover, the presence of TiC led to a significant reduction in densification, making it challenging to apply a conductive coating for SEM analysis. Adjustments to the intensity of the electron beam were necessary to conduct the analysis successfully. Conversely, the samples to which TiC was not added exhibited high density values in the green state and yielded consistent results after sintering in line with previous research, indicating a satisfactory degree of sintering in the absence of TiC. These findings highlight the importance of carefully considering the addition of TiC in ceramic matrix composites during processing, which can have a significant impact on densification and subsequent material properties. The results contribute to the understanding of processing parameters with regard to the production of ceramic composites with desirable characteristics for ballistic applications.

Publisher

University of Pannonia

Subject

General Chemical Engineering,General Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3