1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al. (2015) TensorFlow: Large-scale machine learning on heterogeneous distributed systems. Software available from tensorflow.org. arXiv:1603.04467.
2. Baba, Y., Takase, T., Atarashi, K., Oyama, S., and Kashima, H. (2018) Data analysis competition platform for educational purposes: lessons learned and future challenges. Proceedings of the 8th Symposium on Educational Advances in Artificial Intelligence 2018 (EAAI-18), 7887–7892.
3. Bender, E. (2016) Challenges: crowdsourced solutions. Nature 533, S62–S64.
4. Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A., Beaudet, A. L., Ecker, J. R., et al. (2010) The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28, 1045–1048.
5. Bochare, A., Gangopadhyay, A., Yesha, Y., Joshi, A., Yesha, Y., Brady, M., Grasso, M. A., and Rishe, N. (2014) Integrating domain knowledge in supervised machine learning to assess the risk of breast cancer. Int. J. Med. Eng. Inform. 6, 87–99.