Modeling coordinated operation of multiple hydropower reservoirs at a continental scale using artificial neural network: the case of Brazilian hydropower system

Author:

Brêda João Paulo Lyra Fialho1ORCID,Paiva Rodrigo Cauduro Dias de1ORCID,Pedrollo Olavo Corrêa1ORCID,Passaia Otávio Augusto2ORCID,Collischonn Walter1ORCID

Affiliation:

1. Universidade Federal do Rio Grande do Sul, Brasil

2. Fundação Cearense de Meteorologia e Recursos Hídricos, Brasil

Abstract

ABSTRACT Reservoirs considerably affect river streamflow and need to be accurately represented in environmental impact studies. Modeling reservoir outflow represents a challenge to hydrological studies since reservoir operations vary with flood risk, economic and demand aspects. The Brazilian Interconnected Energy System (SIN) is an example of a unique and complex system of coordinated operation composed by more than 160 large reservoirs. We proposed and evaluated an integrated approach to simulate daily outflows from most of the SIN reservoirs (138) using an Artificial Neural Network (ANN) model, distinguishing run-of-the-river and storage reservoirs and testing cases whether outflow and level data were available as input. Also, we investigated the influence of the proposed input features (14) on the simulated outflow, related to reservoir water balance, seasonality, and demand. As a result, we verified that the outputs of the ANN model were mainly influenced by local water balance variables, such as the reservoir inflow of the present day and outflow of the day before. However, other features such as the water level of 4 large reservoirs that represent different regions of the country, which infers about hydropower demand through water availability, seemed to influence to some extent reservoirs outflow estimates. This result indicates advantages in using an integrated approach rather than looking at each reservoir individually. In terms of data availability, it was tested scenarios with (WITH_Qout) and without (NO_Qout and SIM_Qout) observed outflow and water level as input features to the ANN model. The NO_Qout model is trained without outflow and water level while the SIM_Qout model is trained with all input features, but it is fed with simulated outflows and water levels rather than observations. These 3 ANN models were compared with two simple benchmarks: outflow is equal to the outflow of the day before (STEADY) and the outflow is equal to the inflow of the same day (INFLOW). For run-of-the-river reservoirs, an ANN model is not necessary as outflow is virtually equal to inflow. For storage reservoirs, the ANN estimates reached median Nash-Sutcliffe efficiencies (NSE) of 0.91, 0.77 and 0.68 for WITH_, NO_ and SIM_Qout respectively, compared to a median NSE of 0.81 and 0.29 for the STEADY and INFLOW benchmarks respectively. In conclusion, the ANN models presented satisfactory performances: when outflow observations are available, WITH_Qout model outperforms STEADY; otherwise, NO_Qout and SIM_Qout models outperform INFLOW.

Publisher

FapUNIFESP (SciELO)

Subject

Earth-Surface Processes,Water Science and Technology,Aquatic Science,Oceanography

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3