Application of the AHP-Gaussian method to support the prioritization of workers' health actions in Brazil, based on data from DATASUS

Author:

Russo Ana Carolina1ORCID,Russo Edison2ORCID

Affiliation:

1. Universidade de São Paulo, Brasil

2. Centro Universitário das Faculdades Metropolitanas Unidas, Brasil

Abstract

Abstract This study applied the AHP-Gaussian method (AHP-G) to prioritize occupational health actions in Brazil based on data from DATASUS, used to provide analytical approaches needed to manage the complexity and multidimensionality of public health data. Unlike traditional methodologies, AHP-G allows a detailed quantitative analysis, thus mitigating the subjectivity involved in evaluating different criteria. The results indicate that pneumoconiosis and occupational cancer are priorities, with São Paulo emerging as the most critical state. The correlation between population data and the identified priorities highlights the relevance of adjusting public policies to the specific needs of states. This study not only fills a significant gap in the literature by providing a refined analytical tool for policymakers and researchers, but also signals future directions to enhance occupational health strategies in the Brazilian context.

Publisher

FapUNIFESP (SciELO)

Reference25 articles.

1. Bleeding out: the devastating consequences of urban violence-and a bold new plan for peace in the streets hardcover;Abt T.,2019

2. Health statistics now: are we making the right investments?;Boerma J. T.;Lancet,2007

3. Constituição Federal, 1988,1988

4. Decreto no 100, de 16 de abril, 1991. Institui a Fundação Nacional de Saúde e dá outras providências,1991

5. DATASUS Trajetória 1991-2002,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3