Affiliation:
1. Isfahan University of Technology, Iran
2. University of New South Wales, Australia
Abstract
The bonding system in low cement castables is achieved by the use of calcium aluminate cement, microsilica and reactive alumina. The lime/silica ratio critically impacts the liquid phase formation at high temperatures and subsequently the corrosion resistance and the mechanical and physical properties of the refractory. In the current study, the effects of microsilica and cement contents on the corrosion resistance and the physical and mechanical properties of Andalusite Low Cement Castables (LCCs) refractories were investigated. Alcoa Cup test was used to evaluate the corrosion resistance of the castables at 850 ºC and 1160 ºC. The study showed that an increase in the microsilica/cement ratio improves the physical and mechanical properties of the castable, but at the expense of the corrosion resistance. When a fixed amount of BaSO4 was added to the base refractory material, barium celsian along with glassy phase formation was observed to increase with the increase in the microsilica/cement ratio in the refractory. The presence of the glassy phases was noted to lower the positive effect of Ba-celsian formation on improving the corrosion resistance of the refractory. The observed results were validated using thermodynamic calculations which indicated that Ba-celsian phase was more resistant than Ca-anorthite for applications involving contact with molten aluminum.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献