Desenvolvimento e validação de um sistema especialista para identificar fungos na análise sanitária de sementes

Author:

Alves Marcelo de Carvalho1,Pozza Edson Ampélio1,Machado José da Cruz1,Carvalho Maria das Graças Guimarães1

Affiliation:

1. UFLA

Abstract

Objetivou-se com o presente trabalho desenvolver e validar um Sistema Especialista (SE) para auxiliar na detecção de fungos em análises de sanidade de sementes. O SE possui opções que permitem auxiliar a identificação de 46 fungos de importância econômica que ocorrem em sementes de algodão, arroz, cenoura, feijão, girassol, milho, soja, sorgo e trigo, submetidas ao teste de incubação em papel de filtro ('blotter test'). São apresentadas fotografias dos patógenos nas sementes e em lâminas, sob diferentes aumentos do estereomicroscópio e microscópio composto. Para aumentar o nível de certeza do usuário, textos referentes às fotografias e glossário de termos técnicos foram incluídos. O sistema fornece nível de confiança (porcentagem de acerto) na resposta ao realizar a diagnose e possibilita acesso aos detalhes sobre o patógeno encontrado. O sistema foi validado por 14 usuários com 3 níveis distintos de conhecimento (grupo 1: acadêmicos de Pós-Graduação da área, grupo 2: acadêmicos de Pós-Graduação de outras áreas e grupo 3: acadêmicos do curso de graduação em Agronomia). A porcentagem de acerto antes e após a utilização do SE foi a seguinte: grupo 1 = antes de acessar o programa a média foi de 62,3% e, após sua utilização, de 95,2%; para os grupos 2 e 3 = 0% de acerto antes de usar o programa e, após a utilização desse, a porcentagem de acerto médio subiu para 88,1 e 95,2%, respectivamente. Considerando todos os fungos testados na fase de validação, independente de seus hospedeiros, o SE em Patologia de Sementes proporcionou incremento na porcentagem média de acerto, após a utilização do sistema de 35,33% para o grupo 1, de 86% para o grupo 2, e de 94% para o grupo 3. Na análise estatística realizada pelo teste do ÷², considerando freqüência esperada de acerto de 90%, os resultados obtidos antes da utilização do SE foram significativos para os grupos 2 e 3, e não-significativos para o grupo 1. Após a utilização do sistema, os resultados foram não-significativos para todos os grupos, ou seja, os resultados esperados (90% de acerto) não foram atingidos. Dessa forma, pode-se verificar que o programa aumenta consideravelmente a acurácia e precisão na identificação de fungos no teste de sanidade de sementes e possibilita que profissionais sem conhecimento prévio na área possam acessar informações específicas, como as referentes à sanidade de sementes pelo método de incubação em papel de filtro.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science

Reference29 articles.

1. A multi-agent system for the determination of optimal hybrids in crop production;BADJONSKI M.;Computers and Electronics in Agriculture,2000

2. Sistemas de apoio à decisão;BÍNDER F.B.,1994

3. Prototyping na expert system for diagnosis of potato diseases;BOYD D.W.;Computers and Electronics in Agriculture,1994

4. NEPER: a multiple strategy wheat expert system;EDREES S.A.;Computers and Electronics in Agriculture,2003

5. Knowledge based systems for pest management: an applications based review;EDWARD-JONES G.;Pesticide Science,1992

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3