Affiliation:
1. Universidade Federal do Rio Grande do Sul, Brazil
2. Universidade Federal de Santa Catarina, Brazil
Abstract
As imagens com resolução espacial submétrica, como as adquiridas por Veículo Aéreo Não Tripulado (VANT), apresentam alta variabilidade espectral. A análise baseada em objetos possibilita a redução dessa variabilidade e a geração de atributos, aumentando a dimensionalidade do conjunto de dados. Funções de seleção de atributos relevantes e de reforço, disponíveis no algoritmo C5.0, e a análise baseada em objetos facilitam a classificação dessas imagens. Este trabalho teve como objetivos: (i) avaliar as classificações dos objetos em relação aos parâmetros de seleção de atributos (winnow), de reforço (trial) e do Número Mínimo de Amostras (NMA), (ii) determinar os atributos preditivos mais importantes e (iii) comparar a classificação por Árvore de Decisão com Máquina de Vetores Suporte. Para segmentar a imagem foi utilizado o método crescimento de regiões e para a classificação o algoritmo C5.0. Os valores dos parâmetros trial (10) e NMA (5) resultaram acurácias superiores a 0,8. Com esses parâmetros o valor do kappa foi superior a SVM. Ao habilitar o parâmetro winnow foi observado uma redução da dimensionalidade do conjunto de dados de aproximadamente 30%. Os dois atributos mais importantes na discriminação das classes foram a razão entre as bandas verde e azul e a média dos valores das elevações
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献