Functionally graded concrete: porosity gradation to enhance durability under carbonation

Author:

Ribeiro Daniel Veras1ORCID,Silva Adriana dos Santos1ORCID,Dias Cléber Marcos Ribeiro1ORCID

Affiliation:

1. Universidade Federal da Bahia, Brasil

Abstract

Abstract The present paper evaluated the potential application of the functionally graded material (FGM) concept to develop more durable concrete to carbonation, one of the main degradation mechanisms of reinforced concrete structures. Accelerated carbonation tests with controlled temperature (27 ( 2°C), CO2 concentration (3 ( 0.5%) and humidity (65 ( 5%) were carried out in homogeneous concretes and with functional gradation in which the porosity of the material was varied across the slices. For the manufacture of graded concrete specimens, concretes with water/cement ratios equal to 0.35, 0.45, and 0.55 were produced, with lower porosity (w/c = 0.35) close to the surface of the specimen. The advance of the carbonation front was evaluated after 8, 9, 10, 14, and 24 weeks of accelerated exposure, using the chemical indicator phenolphthalein. The results show that the functionally graded concrete had a carbonation coefficient (K) slightly higher than that of the concrete with a w/c ratio equal to 0.35 (1.71 and 1.54 mm.week-0.5, respectively) and much lower than concrete with water-cement ratio equal to 0.45 (2.31 mm.week-0.5) and 0.55 (3.78 mm.week-0.5). This demonstrates that functional grading can be an efficient method to increase the durability of concrete elements subject to carbonation.

Publisher

FapUNIFESP (SciELO)

Reference35 articles.

1. Fiber texture and mechanical structure of bamboo;AMADA S.;Composites part B: Engineering,1997

2. Functionally graded structure of hemp palm branches;AMADA S.;Materials Science Forum,1999

3. NBR 7211: agregados para concreto: especificação,2009

4. NBR 9779: argamassa e concreto endurecidos - determinação da absorção de água por capilaridade,2012

5. NBR NM 45: agregados: determinação da massa unitária e do volume de vazios.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3