Development and in vitro evaluation of Letrozole loaded biodegradable nanoparticles for breast cancer therapy

Author:

Dey Sanjoy Kumar,Mandal Bivash,Bhowmik Manas,Ghosh Lakshmi Kanta

Abstract

The objectives of our study were to prepare and evaluate a biodegradable nanoparticulate system of Letrozole (LTZ) intended for breast cancer therapy. LTZ loaded poly(lactide-co-glycolide) nanoparticles (LTZ-PLGA-NPs) were prepared by emulsion-solvent evaporation method using methylene chloride and polyvinyl alcohol. Percentage of drug (with respect to polymer) was selected as formulation variable. LTZ-PLGA-NPs were characterized by particle size, zeta potential, infrared spectra, drug entrapment efficiency and in vitro release. Sonication was done with an ultrasound pulse sonicator at 70 W, 30 kHz for 90 sec to produce stable NPs of mean size range from 64 nm to 255 nm with high entrapment efficiency (68% to 82%). Percentage of drug significantly influenced particle size, entrapment efficiency and release (p <0.05). The system sustained release of LTZ significantly and further investigation could exhibit its potential usefulness in breast cancer therapy.

Publisher

FapUNIFESP (SciELO)

Subject

General Pharmacology, Toxicology and Pharmaceutics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3