Surface-enhanced raman scattering nanostructures potential for biomedical applications

Author:

Wei Guo Kelvii

Abstract

Owing to the definitely excellent property of nanostructures such as controllable release of ions from the buried nanoscale thin layers, cell response to microscale morphological changes of substrates, distinctively enhancing sensitivity rendered by electrodes with sizes less than 10 micrometers, and dramatically increasing electromagnetic field from local surface plasmon resonance of nanostructures, nanostructures are playing more and more crucial role in the challenging fields. As one of the most sensitive spectroscopic tools, surface enhanced Raman scattering (SERS) shows highly sensitive biological and chemical detection, such as applications for a better biomedical applications and ecotoxicology. It is well known that surfaces with functioned nanostructures often possessthe formation of surface plasma resonance resulted in SERS distinctive enhancement attractively. Therefore, nanostructures(such as nanorods and nanobranches/wires, nanofractal, nanoprisms, and hybrid nanostructures) for SERS are marked aim to provide the related vital information. It should be pointed out that there are a lot of substantial improvements related to the technical innovation in SERS fabrication with anisotropic nanostructures. However, obstacles or challenges are still to prevent these techniques from extensively applying in the practical applications, especially for the SERS-based systems. The significantly crucial case is that it is hard to control anisotropic nanoobjects assembly into ordered structures because the degree of order among the individual building blocks, spatial arrangement and the assembly direction determine the new and/or improved properties.

Publisher

MedCrave Group Kft.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3