Spatial Vulnerability Investigation by Morphotectonic Analysis of the Mandakini River Basin near Kedarnath, Uttarakhand, India using SRTM DEM in a GIS Platform and GPS Data

Author:

Sahu Siba Sundar1,Bhattacharjee Niladri2

Affiliation:

1. Geological Survey of India 1 , Hyderabad – 500 068, India

2. Department of Geology, School of Earth and Environmental Sciences, Amity University Punjab 2 , Mohali – 140 306, India

Abstract

ABSTRACT Tectonomorphic study was carried out to evaluate the intensity of tectonic activity in and around the Mandakini River basin (1330 sq. km area) near Kedarnath. The area has witnessed several vulnerable landslides and devastating floods in the recent past. Quantitative parameters such as Bifurcation Ratio (BR), Asymmetry Factor (AF), Valley floor width Index (Vf), Hypsometric Integral (HI), Stream-length gradient Index (SL index), Sinuosity Index (Sp) and two qualitative parameters such as drainage orientation survey and the hypsometric curve is used to evaluate the spatial tectonomorphic susceptibility of the different watersheds of the Mandakini River basin. High BR, medium to high AF and low Vf show a very high vulnerability mostly close to MCT. High Sp and medium HI values are linked with continuous tectonic disturbances followed by erosion. High SL index demarcates high tectonic instability along different portions of streams which is prone to tectonic perturbation. The Index of Relative Active Tectonic also suggests variability in tectonic activities varies from very high tectonic activity to high tectonic activity. Regional geology and lower-order stream orientation survey of the study area revealed that the initial NE-SW shortening direction of the Himalayan orogeny is rotated to the N-S direction in the later stage. The resulting deformation style is expressed by the NW–SE and NE–SW striking lineaments and WNW–ESE striking thrust dipping moderately toward the north. Processed GPS data shows the rotation of the maximum principal compression direction and resultant readjustment of strains are linked with the revolving of the Indian Plate in the anticlockwise direction which is responsible for the orientation of different discontinuities, developing maximum shear stress conditions, weak internal friction and negligible resistance by low-strength rock. The present tectonic setup of the Kedarnath region is highly susceptible to devastating floods and vulnerable landslides.

Publisher

Geological Society of India

Reference73 articles.

1. Abrupt climate change;Alley;Science,2003

2. Erosional control of active compressional orogens;Beaumont,1991

3. GIS-based approach for the measurement of variability in tectonomorphic signatures using DEM’s data: a case study from the Habo Dome in the Kachchh area, India;Bhattacharjee;Environ. Earth Sci.,2020

4. Entertaining a great earthquake in western Nepal: historic inactivity and geodetic tests for the present state of strain;Bilham;Jour. Nepal Geol. Soc.,1995

5. GPS measurements of present-day convergence across the Nepal Himalaya;Bilham,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3