Phillips curve with spatial effects based on Russian regional data

Author:

Иноземцев Е.С.,Кротова Ю.И.

Abstract

В работе проверяется гипотеза о наличии пространственных эффектов для квартальных индексов потребительских цен (ИПЦ) в российских регионах за 2015–2021 гг. Для моделирования пространственной зависимости гибридной кривой Филлипса использовались матрицы расстояний, соседства и миграции. Выявлена пространственная нестационарность модели для всей территории страны, поэтому оценивание проводилось отдельно для западных и восточных регионов. Тестирование на панельных данных показало незначимость пространственного лага зависимой переменной, что подвергает сомнению предположение о «мгновенном» (в течение того же периода) переносе инфляции. Вероятно, ключевым здесь является фактор частотности данных: квартальные или месячные уровни инфляции лучше подходят для пространственного анализа, чем годовые (для которых пространственный лаг будет значимым). Оценивание дарбиновской модели с ошибкой (SDEM) показало, что инфляционные ожидания в соседних регионах отрицательно влияют на инфляцию в регионе в данном периоде. Оценки вклада прямых эффектов для π(t – 1), π(t + 1) и косвенного эффекта для π(t – 1) имеют ожидаемые положительные знаки. Сумма оценок коэффициентов при лагах инфляции в пространственной гибридной кривой Филлипса близка к единице. Применение матрицы миграции для западных регионов оказалось неудачным, возможно из-за значительных искажений, вносимых Москвой и Московской областью в межрегиональные взаимодействия. The paper tests the hypothesis of the presence of spatial effects for quarterly CPI in the Russian regions over the period 2015–2021. Contiguity, distance and migration matrices were used for spatial Phillips curve modelling. Due to spatial non-stationarity of the model for the whole Russia, the model was used for estimations separately for western and eastern regions. Panel data testing showed insignifi cance of the spatial lag of the dependent variable, which casts doubt on the hypothesis of “instant” (within the same period) infl ation spillover. Perhaps the key factor here is the frequency of time series data: quarterly or monthly CPI better suit for spatial analysis than annual ones (for which the spatial lag will be signifi cant). Spatial Durbin error model (SDEM) estimation showed that the infl ation expectations in neighboring regions negatively impact on infl ation in the region in this period. The estimations of the direct effects contribution for π(t − 1), π(t + 1) and indirect effect contribution for (t − 1) expectedly have positive signs. The sum of estimated coeffi cients for infl ation lags in spatial hybrid Phillips curve is close to 1. The use of a migration matrix for the western regions was unsuccessful, perhaps due to strong distortions introduced by Moscow and the Moscow region into interregional interactions.

Publisher

Journal of New Economic Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3