Fluorescence in situ hybridization (FISH) in the molecular cytogenetics of cancer

Author:

Szeles Anna1

Affiliation:

1. Microbiology and Tumor Biology Center, Karolinska Institute Box 280, 17177 Stockholm, Sweden

Abstract

In this review, we discuss the developments of fluorescence in situ hybridization (FISH) and place them in the context of their applications in cancer research. These methods are not only very useful for the causal analysis of the development and spread of certain tumors, they are also efficient tools for tumor diagnosis. Although a review of all of the literature in this field is not possible here, many of the major contributions are summarized along with recent work from our laboratory. Our group contributes to the goal of functional identification of tumor growth antagonizing genes. FISH and molecular analyses have shown that the short arm of human chromosome 3 is frequently deleted in kidney, lung, breast, uterus, testis and ovary carcinomas. Deletion-mapping studies have outlined several separate deletion prone regions in different tumors, namely 3pter-p25, p22-p21.3, p21.1-p14 and p14-p12, which may contain putative tumor suppressor genes (TSGs). Candidate suppressor genes isolated from frequently deleted regions need to be assayed for possible tumor-antagonizing ability by functional tests. We have developed a functional test system, the microcell hybrid (MCH) based "elimination test” (Et). The Et is based on the introduction of a single human chromosome into tumor cells of human or murine origin, via microcell fusion. The MCHs were analyzed by FISH painting and PCR for the elimination or retention of specific human chromosome 3 (chr. 3) regions after one or several passages in severe combined immune-deficient (SCID) mice. We have defined a common eliminated region (CER) on chr. 3p2I.3. CER is approximately 1 megabase (Mb) in size. We have covered this region with PACs (bacteriophage PI based artificial chromosome) and used FISH mapping for localization and ordering PACs and cosmids on the chromosome 3 and high-resolution free chromatin/DNA fiber FISH to orient the PAC contig, to measure the lengths of PACs, and to establish their order. Activation of cellular oncogene by chromosomal translocation, which brings an oncogene under the influence of a highly active chromosome region, appears to play a pivotal role in the genesis of certain hematopoetic and lymphoid tumors. We have detected specific chromosomal translocations by FISH painting in mouse plasmacytoma (MPC), human Burkitt lymphoma (BL) and other B-cell derived tumors. We have showed in a murine sarcoma derived line (SEWA) that FISH can also be used for detection of amplified oncogene (c-myc) and the linked locus (pvt-1). We have also applied the FISH technique for visualization of integrated and episomal Epstein-Barr virus (EBV) genomes and EBV transcripts in EBV-carrying B-cell derived human cell lines.

Publisher

Akademiai Kiado Zrt.

Subject

General Immunology and Microbiology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3