Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants

Author:

Goc Anna1,Niedzwiecki Aleksandra1ORCID,Ivanov Vadim1,Ivanova Svetlana1,Rath Matthias1

Affiliation:

1. Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA 95138, USA

Abstract

Abstract Despite vaccine availability, the global spread of COVID-19 continues, largely facilitated by emerging SARS-CoV-2 mutations. Our earlier research documented that a specific combination of plant-derived compounds can inhibit SARS-CoV-2 binding to its ACE2 receptor and controlling key cellular mechanisms of viral infectivity. In this study, we evaluated the efficacy of a defined mixture of plant extracts and micronutrients against original SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. The composition containing vitamin C, N-acetylcysteine, resveratrol, theaflavin, curcumin, quercetin, naringenin, baicalin, and broccoli extract demonstrated a highest efficacy by inhibiting the receptor-binding domain (RBD) binding of SARS-CoV-2 to its cellular ACE2 receptor by 90%. In vitro exposure of test pseudo-typed variants to this formula for 1 h before or simultaneously administrated to human pulmonary cells resulted in up to 60% inhibition in their cellular entry. Additionally, this composition significantly inhibited other cellular mechanisms of viral infectivity, including the activity of viral RdRp, furin, and cathepsin L. These findings demonstrate the efficacy of natural compounds against SARS-CoV-2 including its mutated forms through pleiotropic mechanisms. Our results imply that simultaneous inhibition of multiple mechanisms of viral infection of host cells could be an effective strategy to prevent SARS-CoV-2 infection.

Funder

Dr. Rath Health Foundation

Publisher

Akademiai Kiado Zrt.

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3