Affiliation:
1. Eötvös Loránd University, Budapest
Abstract
The famous Hadwiger–Nelson problem asks for the minimum number of colors needed to color the points of the Euclidean plane so that no two points unit distance apart are assigned the same color. In this note we consider a variant of the problem in Minkowski metric planes, where the unit circle is a regular polygon of even and at most 22 vertices. We present a simple lattice–sublattice coloring scheme that uses 6 colors, proving that the chromatic number of the Minkowski planes above are at most 6. This result is new for regular polygons having more than 8 vertices.