Crustal flow modes in large hot orogens

Author:

Beaumont C.1,Nguyen M. H.12,Jamieson R. A.2,Ellis S.3

Affiliation:

1. Oceanography Department, Dalhousie University Halifax, Nova Scotia, Canada B3H 4J1 chris.beaumont@dal.ca

2. Department of Earth Sciences, Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5

3. Institute for Geological and Nuclear Sciences Lower Hutt, New Zealand

Abstract

AbstractCrustal-scale channel flow numerical models support recent interpretations of Himalayan—Tibetan tectonics proposing that gravitationally driven channel flows of low-viscosity, melt-weakened, middle crust can explain both outward growth of the Tibetan Plateau and ductile extrusion of the Greater Himalayan Sequence. We broaden the numerical model investigation to explore three flow modes: homogeneous channel flow (involving laterally homogeneous crust); heterogeneous channel flow (involving laterally heterogeneous lower crust that is expelled and incorporated into the mid-crustal channel flow); and the hot fold nappes style of flow (in which mid-/lower crust is forcibly expelled outward over a lower crustal indentor to create fold nappes that are inserted into the mid-crust). The three flow modes are members of a continuum in which the homogeneous mode is driven by gravitational forces but requires very weak channel material. The hot fold nappe mode is driven tectonically by, for example, collision with a strong crustal indentor and can occur in crust that is subcritical for homogeneous flows. The heterogeneous mode combines tectonic and gravitationally driven flows. Preliminary results also demonstrate the existence and behaviour of mid-crustal channels during advancing and retreating dynamical mantle lithosphere subduction. An orogen temperature—magnitude (T-M) diagram is proposed and the positions of orogens in T-M space that may exhibit the flow modes are described, together with the characteristic positions of a range of other orogen types.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3