Subsidence around oceanic ridges along passive margins: NE Arabian Sea

Author:

Misra Achyuta Ayan1,Banerjee Smita1,Kundu Nishikanta1,Mukherjee Brunti1

Affiliation:

1. Exploration, Reliance Industries Ltd., Mumbai 400 701, Maharashtra, India

Abstract

AbstractThe northern part of the western continental margin of India formed due to the separation of the Seychelles from India at c. 63 Ma. This produced offshore tectonic elements such as the Gop Rift, the Saurashtra Volcanic Platform (SVP) and the Laxmi Ridge, as well as numerous seamounts, e.g. the Raman and Panikkar seamounts. The Laxmi Ridge and the Laxmi Basin have been studied using high-resolution 2D reflection seismic data and well data. Patch and pinnacle carbonate reefs, indicating shallow waters, are common in the north, whereas large, isolated platforms are usually noted in the south. Palaeo-depth estimates are made from well biostratigraphy. Subsidence studies of the SVP suggest that the burial history is consistent with the anomalously hot Réunion plume. We have performed a subsidence analysis south of the SVP on the Laxmi Ridge and Laxmi Basin. The sediment-unloaded basement depths, estimated using using flexural isostasy with effective elastic thicknesses of 10–40 km have been found to be 2000–4000 m in areas where carbonates exist. These carbonates indicate <200 m bathymetry at c. 65 Ma, and the subsidence discrepancy is thus due to thermal cooling or anomalous heating due to the Deccan plume. Patch and pinnacle reefs in the north suggests that either the rise in sea-level or the rate of subsidence of the basement were fast. The presence of large platforms in the south indicates otherwise. This is possibly due to a greater influence from the Indus Fan sediments towards the north. In addition, the Laxmi Ridge is a spreading centre that remained emergent near or above sea-level due to plume support, which was also greater in the south due to proximity to the plume. When the plume support discontinued, the ridge subsided quickly to present-day depths, which matches the subsidence expected for 60–70 Myr old oceanic crust.Supplementary material: A table is available at https://doi.org/10.6084/m9.figshare.c.3470751

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference152 articles.

1. Aillud G.S. 2001. Palaeocology and sequence stratigraphy: Lower Cretaceous, Lusitanian Basin, Portugal. PhD thesis, University of Plymouth.

2. When and where did India and Asia collide?

3. Agrawal A. 1990. Structure and tectonic evolution of western continental margin of India. Ph.D. dissertation, University of North Carolina at Chapel Hill, p. 117.

4. Depth anomalies in the Arabian Basin, NW Indian Ocean;Geo-Marine Letters,2008

5. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3