Mechanisms of damage by salt

Author:

Espinosa-Marzal R. M.1,Scherer G. W.1

Affiliation:

1. Civil and Environmental Engineering, Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA

Abstract

AbstractLimestone is very susceptible to the aggressive action of salts. This paper describes the current understanding of the mechanisms by which salt crystallization causes damage to limestone. Crystallization pressure increases with the supersaturation of the solution, which may result from rapid drying and/or decrease in temperature. Salts with a tendency to achieve higher supersaturation owing to a high nucleation barrier are potentially able to induce more severe damage. In the presence of small pores (<100 nm), equilibrium thermodynamics indicates that crystallization pressure can result from the curvature dependence of the solubility of a salt crystal. Under non-equilibrium conditions, high transient stresses can occur even in larger pores. In the field, the complexity of salt weathering results from heat, moisture and ion transport coupled with in-pore crystallization during changing climatic conditions. This paper describes how progress in the modelling and numerical simulation of these coupled processes can contribute to a better understanding of the influencing factors and assessment of critical conditions.Classically, tests such as the bursting test and the capillary rise experiment with simultaneous evaporation have been applied to evaluate qualitatively stone deterioration induced by salt crystallization. More recently our group has introduced other experimental methods to the field of salt weathering that provide quantitative information about nucleation and crystallization kinetics in porous materials (by differential scanning calorimetry), induced deformation and stress (by dynamic mechanical analysis and a novel warping test), and pore clogging caused by in-pore crystallization.The final part of this paper is dedicated to a discussion of methods to prevent damage that may alter one of the crystallization steps, such as nucleation, crystal growth, disjoining pressure between mineral and crystal surfaces, or solution properties. Indeed, efficient treatments have been found for particular scenarios in the laboratory; however, the consequences of these treatments in the field, such as the behaviour at other temperatures and concentrations as well as the durability of the treatments, are not known yet.Indeed, a lack of knowledge still exists in understanding the pore-level crystallization, such as the processes in the thin film between mineral surfaces and salt crystals that determine the disjoining pressure, or the dynamics of crystallization within the pore network that influence the salt distribution and stress in the stone. Atomic force microscopy, surface force measurements, nuclear magnetic resonance and simulations using molecular dynamics are promising methods to elucidate these points. By understanding these remaining questions a more reliable protection of stone against salt weathering will be achieved.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference74 articles.

1. Bear J. (1972) Dynamics of Fluids in Porous Materials (Dover Publications, New York).

2. Buil M. Aguirre-Puente J. (1981) Thermodynamic and experimental study of the crystal growth of ice. Proceedings of the ASME Winter Annual Meeting, 1–7, 81-WA/HT-69.

3. Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3