The role of metamorphic fluids in the formation of ore deposits

Author:

Yardley Bruce W. D.1,Cleverley James S.2

Affiliation:

1. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

2. CSIRO Earth Science & Resource Engineering, Australian Resources Research Centre, Kensington, Western Australia 6152, Australia

Abstract

AbstractMany ore deposits are hosted by metamorphic rocks, and metamorphic fluids have been invoked as a source for various deposits, especially gold deposits. Metamorphic fluid compositions reflect original sedimentary environment: continental shelf sequences yield saline metamorphic fluids with little dissolved gas while metasediments from accretionary and oceanic settings host less saline fluids with significant CO2 contents.The principal difficulty in reconciling ore deposits with a metamorphic origin is that many form quickly (c. 1 Ma), whereas metamorphic heating is slow (c. 10–20 °/Ma). Gravitational instability means that fluid cannot be retained. Metamorphic ores may nevertheless form by: (a) segregation leading to enrichment of pre-existing concentrations; (b) infiltration of water-rich fluids from schists into marbles at high temperature overstepping decarbonation reactions and allowing fast reaction that locally draws down temperature; and (c) rapid uplift driving dehydration reactions owing to pressure drop.Some orogenic lode gold deposits fit well with a purely metamorphic origin during rapid uplift, but others are problematic. At Sunrise Dam, Western Australia, anomalies in Sr-isotope ratios and in apatite compositions indicate a partial mantle/magmatic source. Low salinity, H2O–CO2 fluids commonly associated with hydrothermal gold reflect the effect of salt on gas solubility, not the origin of the fluid.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3