Modelling effect of sericitization of plagioclase on the 40K/40Ar and 40Ar/39Ar chronometers: implication for dating basaltic rocks and mineral deposits

Author:

Verati Chrystèle1,Jourdan Fred2

Affiliation:

1. Université de Nice Sophia Antipolis, GEOAZUR, Bât 1, 250 rue Albert Einstein, Les Lucioles 1, Sophia-Antipolis 06560 Valbonne, France

2. Western Australian Argon Isotope Facility, JdL Centre & Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

Abstract

AbstractThe 40Ar/39Ar technique is the most commonly used technique to date basaltic rocks. For basaltic rocks older than about 30 Ma, the dating of plagioclase separates is preferred over groundmass as the latter is susceptible to containing cryptic alteration due to fluid circulations, difficult if not impossible to remove during sample preparation. Alteration under such metamorphic conditions progressively forms K-rich sericite after plagioclase. Owing to its transparency, plagioclase allows a distinction to be made optically between partially–completely altered grains and fresh grains. However, practice shows that grains that contain less than about 1% of sericite are hard to identify under the stereomicroscope. Owing to the high K2O content (c. 10 wt%) of sericite, such compromised grains can have dramatic effects on the age determination of plagioclase.Here, we investigate and quantify the effect of sericite on the 40Ar/39Ar age determination of plagioclase using a numerical model with multiple variable parameters. We show that the most influential parameter is the time difference between the crystallization of plagioclase and the sericitization event. We also show that for some continental flood basalts, even 0.1 wt% of sericite can bias the apparent age of a plagioclase separate by several hundred thousand years. The presence of sericite can be identified using a combination of Ca/K ratios, age spectra, and 39Ar and 37Ar degassing curves obtained during a conventional 40Ar/39Ar step-heating procedure. When the age of the fresh plagioclase and its Ca/K ratio are known, the percentage of sericitization and the age of the alteration event can be estimated. Ultimately, above approximately 65% of sericitization, the apparent age measured on the altered plagioclase is within ±1% of the age of the alteration event, with implications for accurately dating low-temperature metamorphism and mineral deposit formations.Supplementary material:Further details of calculation are available at www.geolsoc.org.uk/SUP18609.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3