Stratigraphic and sedimentological aspects of the worldwide distribution of Apectodinium in Paleocene/Eocene Thermal Maximum deposits

Author:

Denison Christopher N.1ORCID

Affiliation:

1. Astra Stratigraphics, 501 Lone Star Road, Bastrop, Texas, USA

Abstract

AbstractThe Paleocene/Eocene Thermal Maximum (PETM) is characterized by pronounced global warming and associated environmental changes. In the more-or-less two decades since prior regional syntheses of Apectodinium distribution at the PETM, extensive biological and geochemical datasets have elucidated the effect of rising world temperatures on climate and the biome. A Carbon Isotope Excursion (CIE) that marks the Paleocene/Eocene Boundary is associated with an acme of marine dinocysts of the genus Apectodinium in many locations. Distinctive foraminiferal and calcareous nannofossil populations may also be present.For this updated, dinocyst-oriented view of the PETM, data from worldwide locations have been evaluated with an emphasis on stratigraphic and sedimentological context. What has emerged is that a change in lithology is common, often to a distinctive siltstone or claystone unit, which contrasts with underlying and overlying lithotypes. This change, present in shallow marine/coastal settings and in deep-water turbidite deposits, is attributed to radical modifications of precipitation and erosional processes. An abrupt boundary carries the implication that some time (of unknowable duration) is potentially missing, which then requires caution in the interpretation of the pacing of events in relation to that boundary. In most instances an ‘abrupt’ or ‘rapid’ CIE onset can be attributed to a data gap at a hiatus, particularly in shallow shelf settings where transgression resulted from sea-level rise associated with the PETM. Truly gradational lower boundaries of the PETM interval are quite unusual and, if present, are poorly known so far. Gradational upper boundaries are more common, but erosional upper boundaries have been reported.Taxonomic changes have been made to clarify identification issues that have adversely impacted some biostratigraphic interpretations. Apectodinium hyperacanthum has been retained in Wetzeliella, its original genus. The majority of specimens previously assigned to Apectodinium hyperacanthum or Wetzeliella (Apectodinium) hyperacanthum have been reassigned to an informal species, Apectodinium sp. 1. Dracodinium astra has been retained in its original genus as Wetzeliella astra and is emended.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference308 articles.

1. Pre-breakup magmatism on the Vøring Margin: Insight from new sub-basalt imaging and results from Ocean Drilling Program Hole 642E

2. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes

3. The Paleocene and Eocene in the Russian part of West Eurasia

4. New data on the marine Paleogene of the southwestern Siberian plate, Paper 1;Stratigraphy and Geological Correlation,2004

5. The Paleogene history of the Western Siberian seaway – a connection of the Peri-Tethys to the Arctic Ocean;Austrian Journal of Earth Sciences,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3