Lower-crust ductility patterns associated with transform margins

Author:

Henk A.1,Nemčok M.23

Affiliation:

1. Institut für Angewandte Geowissenschaften, Technische Universität, Darmstadt Schnittspahnstra ße 9, D-64287 Darmstadt, Germany

2. Michal Nemčok Energy and Geoscience Institute at University of Utah, 423 Wakara Way, Suite 300, Salt Lake City, UT 84108, USA

3. Energy and Geoscience Laboratory at Geological Institute of Slovak Academy of Sciences, Dúbravská cesta 9, SK-840 05 Bratislava, Slovakia

Abstract

AbstractA three-dimensional (3D) thermal–kinematic modelling approach based on finite-element techniques is used to study lower-crustal viscosity at transform margins during the continent–ocean transform development stage and after the ridge has passed by. Nine modelling scenarios combining different equilibrium surface heat flows and lower-crustal rheologies are studied. Modelling results indicate that substantial parts of the lower crust at transform margins have the potential to flow at geologically appreciable strain rates, which can lead to uplift/subsidence, as well as lateral variations, in upper- and lower-crustal thicknesses and Moho depth. These low-viscosity zones (i.e. parts of the lower crust with effective viscosities of less than 1018 Pa s) make up distinct ductility distributions that vary in space and time during margin evolution. Three basic ductility patterns and related thermal processes can be identified: reduced lower-crustal viscosities originating at the continental rift and the continent–ocean boundary (COB), respectively; reduced lower-crustal viscosities along the transform caused by the migrating ridge; and the background distribution of lower-crustal ductility resulting from the equilibrium temperature field. Superposition of all three ductility patterns and the complex interaction of the underlying perturbations of the temperature field result in distinct differences in the potential of lower-crustal flow both in space (parallel and perpendicular to the transform) and with time. Thus, modelling results provide templates for understanding lower-crustal flow at transform margins in general and await further studies comparing model predictions with actual field observations.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3