Colonic Myenteric Plexus Neurodegeneration and Minor Colon Inflammation in Trimethyltin-induced Rat Model of Neurodegeneration

Author:

Septyaningtrias Dian Eurike1,Zulfa Hilizza Awalina1,Ramadhani Mahayu Firsty1ORCID,Sumaryati 1,Sulistyawati Dewi1,Paramita Dewi Kartikawati1ORCID,Sumiwi Yustina Andwi Ari1ORCID,Susilowati Rina1ORCID

Affiliation:

1. Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract

Gastrointestinal symptoms are common health problems found during aging and neurodegenerative diseases. Trimethyltin-induced rat is known as an animal model of hippocampal degeneration with no data on enteric neurodegeneration. This study aimed to investigate the effect of trimethyltin (TMT) induction on the gastrointestinal tract. A 28-day animal study with male Sprague–Dawley rats (3 months old, 150–200 g) given a single TMT injection (8 mg/kg body weight, intraperitoneal) was conducted. The number of neurons in the colonic myenteric plexus was measured using stereological estimation. Histological scoring of colon inflammation, immunohistochemistry of tumor necrosis factor-α (TNF-α), and quantitative PCR were conducted. This study showed neuronal loss in the colonic myenteric plexus of TMT-induced rat model of neurodegeneration. Minor colon inflammation characterized by inflammatory cell infiltration and slightly higher expression of TNF-α in the colon mucosa were observed in the TMT-induced rat. However, the gut microbiota composition of the TMT-induced rat was not different from that of the control rats. This study demonstrates that TMT induces colonic myenteric plexus neurodegeneration and minor colon inflammation, which suggests the potential of this animal model to elucidate the communication between the gastrointestinal tract and central nervous system in neurodegenerative diseases.

Funder

Dana Masyarakat Grant from the Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3