Wnt3a Mediates the Inhibitory Effect of Hyperoxia on the Transdifferentiation of AECIIs to AECIs

Author:

Xu Wei12,Zhao Ying12,Zhang Binglun12,Xu Bo12,Yang Yang12,Wang Yujing12,Liu Chunfeng12

Affiliation:

1. Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China (WX,YZ,BZ,YY,YW,CL)

2. Department of Ophthalmology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, People’s Republic of China (BX)

Abstract

The aim of this study is to investigate the effect of Wnt3a in the transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I alveolar epithelial cells (AECIs) under hyperoxia condition. In the in vivo study, preterm rats were exposed in hyperoxia for 21 days. In the in vitro study, primary rat AECIIs were subjected to a hyperoxia and normoxia exposure alternatively every 24 hr for 7 days. siRNA-mediated knockout of Wnt3a and exogenous Wnt3a were used to investigate the effect of Wnt3a on transdifferentiation of AECIIs to AECIs. Wnt5a-overexpressed AECIIs were also used to investigate whether Wnt3a could counteract the effect of Wnt5a. The results showed that hyperoxia induced alveolar damage in the lung of preterm born rats, as well as an increased expression of Wnt3a and nuclear accumulation of β-catenin. In addition, Wnt3a/β-catenin signaling was activated in isolated AECIIs after hyperoxia exposure. Wnt3a knockout blocked the inhibition of the transdifferentiation induced by hyperoxia, and Wnt3a addition exacerbated this inhibition. Furthermore, Wnt3a addition blocked the transdifferentiation-promoting effect of Wnt5a in hyperoxia-exposed Wnt5a-overexpressed AECIIs. In conclusion, our results demonstrate that the activated Wnt3a/β-catenin signal may be involved in the hyperoxia-induced inhibition of AECIIs’ transdifferentiation to AECIs.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3