Quantifying Estrogen and Progesterone Receptor Expression in Breast Cancer by Digital Imaging

Author:

Szeszel Monika K.1,Crisman Cameron L.2,Crow Lauren1,McMullen Steven1,Major Jacqueline M.31,Natarajan Loki31,Saquib Abu14,Feramisco James R.51,Wasserman Linda M.51

Affiliation:

1. the Rebecca and John Moores University of California, San Diego, Cancer Center, University of California, San Diego, La Jolla, California

2. San Diego Supercomputer Center, University of California, San Diego, La Jolla, California

3. the Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, California

4. San Diego State University, San Diego, California

5. Department of Medicine, University of California, San Diego, La Jolla, California

Abstract

Developments in digital imaging and fluorescent microscopy provide a new method and opportunities for quantification of protein expression in human tissue. Archived collections of paraffin-embedded tumors can be used to study the relationship between quantitative differences in protein expression in tumors and patient outcome. In this report we describe the use of a DeltaVision Restoration deconvolution microscope, combined with fluorescent immunohistochemistry, to obtain reproducible and quantitative estimates of protein expression in a formalin-fixed paraffin-embedded tissue. As proof of principle, we used antibodies to the estrogen and progesterone receptors in a hormone receptor–positive breast cancer specimen. We provide guidelines for control of day-to-day variability in camera and microscope performance to ensure that image acquisition leads to reproducible quantitative estimates of protein expression. We show that background autofluorescence related to formalin fixation can be controlled and that for proteins that are expressed in nearly every cell, multiplexing two primary antibodies on the same slide does not significantly affect the results obtained. We demonstrate that for proteins whose expression varies markedly from cell to cell, data reproducibility, as assessed by imaging successive tissue sections, is more difficult to determine.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3