Effect of Stresses in Molybdenum Back Contact Film on Properties of CIGSS Absorber Layer

Author:

Kadam Ankur A.,Jahagirdar Anant H.,Dhere Neelkanth G.

Abstract

AbstractAnalysis of CuIn1-x Gax Se2-y Sy (CIGSS) absorber and molybdenum back contact layer was carried out to understand the changes in the microstructure of CIGSS layer as a function of the deposition conditions and the nature of stress in the underlying Mo film. All the depositions were carried out on 10 cm x 10 cm glass substrates. Compressive and tensile stressed molybdenum films were prepared with combinations of deposition parameters; power and pressure. CIGSS absorber layer was prepared by depositing metallic precursors using DC magnetron sputtering followed by selenization and sulfurization. Molybdenum layer deposited at 300 W and 3 x 10 Torr pressure produced compressive stress with compact, well adherent and lower sheet resistance as compared to the tensile stressed film deposited at 200 W and 5 x 10 Torr. The crystallinity of the CIGSS film was found not to depend on the stress in the underlying molybdenum film. However, the adhesion at the Mo/CIGSS as well as gallium profile at the Mo/CIGSS interface were affected by the stress.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference13 articles.

1. 13 Kadam A. A. and Dhere N. G. , To be published in Vacuum Science and technology, July/August issue (2005).

2. Stress, strain, and microstructure of sputter‐deposited Mo thin films

3. CIGS2 thin-film solar cells on flexible foils for space power

4. Investigations on Microstructure, Surface Topography, and Growth Process of Sputtered Molybdenum Showing Texture Turnover

5. 9 Tanaka Y. , Akema N. , Morishita T. , Okumura D. , Kushiya K. , Proceedings of the 17th EC Photovoltaic Solar Energy Conference, Munich, October 2001; 989–994.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3