Hydrogen adsorbed in ab initio computationally simulated nanoporous carbon. An energetics study

Author:

Valladares R. M.,Valladares Alexander,Calles A. G.,Valladares Ariel A.

Abstract

AbstractNanoporous carbon has been considered an interesting and potentially useful material for storing hydrogen. Using nanoporous carbon periodic supercells with 216 atoms and 50 % porosity, constructed with a novel ab initio approach devised by us, the dangling bonds of the carbon atoms were first saturated with hydrogen, then relaxed and its total energy calculated with and without hydrogen. Next the same number of hydrogen atoms, in molecular form, was randomly placed within the pore of the pure carbon supercell, then the sample relaxed, and finally its total energy calculated, also with and without hydrogens. From these results the average energy per hydrogen atom is obtained for both cases. For the molecular hydrogen sample the binding energy found per hydrogen atom is 343.89 meV, which compares favourably with values reported in the literature, 300-400 meV/molecule.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference19 articles.

1. Radial distribution functions ofab initiogenerated amorphous covalent networks

2. Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes

3. Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures

4. [10] Computer modeling of nanoporous materials: An ab initio novel approach for silicon and carbon, Valladares Ariel A. , Valladares Alexander and Valladares R. M. , Accepted for publication, MRS Proceedings Symposium QQ, MRS, Fall Meeting, 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3