Tip-Induced Calcite Single Crystal Nanowear

Author:

Gunda Ramakrishna,Volinsky Alex A.

Abstract

AbstractWear behavior of freshly cleaved single crystal calcite (CaCO3) was investigated by continuous scanning using the Hysitron Triboindenter in ambient environment as a function of scanning frequency (1 Hz – 3 Hz) and contact load (2 µN – 8 µN). At lower loads below 4 µN, initiation of the ripples takes place at the bottom of the surface slope, which continue to propagate up the slope as scanning progresses. The orientation of these ripple structures is perpendicular to the long scan direction. As the number of scans increases, ripples become fully developed, and their height and periodicity increase with the number of scans. At 6 µN normal load, tip-induced wear occurs as the tip begins removing the ripple structures with increased number of scan cycles. As the contact load increased further, ripples did not initiate and only tip-induced wear occurred on the surface, and saturated after 20 scans. At 1 Hz frequency wear takes place as material slides towards the scan edges when the tip moves back and forth. Material removal rate increased with contact load and it is observed that the number of scans required to create a new surface is inversely proportional to the contact load. Possible mechanisms responsible for the formation of ripples at higher frequencies are attributed to the slope of the surface, piezo hysteresis, system dynamics, or a combination of effects. The wear regime is due to abrasive wear. Single crystal calcite hardness of 2.8±0.3 GPa and elastic modulus of 75±4.9 GPa were measured using nanoindentation and used to determine the wear mode.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference9 articles.

1. 9 Degarmo E.P. , Black J.T. , Kohser R.A. , sons John Wiley & , 9th ed., (2003) 504

2. 8 Zelinski P. , Modern machine shop magazine, October 2005

3. Ion beam-induced nanostructuring of AIIIBV semiconductor surfaces studied with dynamic force microscopy and Kelvin probe force spectroscopy

4. Propulsion of Ripples on Glass by Ion Bombardment

5. 7 Pang Xiaolu , Volinsky A.A. , Gao Kewei , submitted to Journal of Materials Research

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3