Dependence of Threading Dislocation Density on Substrate Misorientation in In0.15Ga0.85As Grown on GaAs(100)

Author:

Uppal P.N.,Ahearn J.S.,Herring R.

Abstract

AbstractThe density and arrangement of dislocations in In0.15Ga0.85As grown on GaAs(100)) were determined by transmission electron microscopy as a function of misorientation toward (111)A, (111)B, and (110). Strained layer superlattices were used in all cases to reduce dislocation density. Layers grown on exact GaAs(100) exhibited a non-uniform threading dislocation dis- tribution whereby some areas had a high density (∼ 109cm-2or higher) of dislocation tangles and other areas that we in between had a more uniform density (∼ 2 x 107cm-2). The misorientated layers exhibited a uniform threading dislocation distribution with densities of ∼ 5 x 106 cm-2 for (100) misoriented towards (111)A, ∼ 1 x 107cm-2towards (111)B, and ∼ 3 x 107cm-2 towards (110). The misfit dislocation network (dislocations located at the GaAs-InO0.15Ga0.85 As interface) formed orthogonal dislocation arrays in the case of exact (100) substrates and slightly non-ortho- gonal arrays in the case of misoriented substrates. These results are explained with the help of a general glide model of strain relaxation in which the exact (100) orientation has eight equally stressed glide systems which presumably activate during strain relaxation. With misoriented substrates the stress symmetry is broken and fewer glide systems experience the maximum stress, thus reducing the number of active dislocation systems. A small asymmetry in interfacial dis- location density was observed in all the cases where the linear dislocation density along the two (011) and (011) orthogonal directions differed by about 20%. This is explained by the preferred activation of (x-dislocations (high dislocation mobility) over 13-dislocations (low dislocation mobility).

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference4 articles.

1. Structure and recombination in InGaAs/GaAs heterostructures

2. 1. Breen K. , Uppal P.N. , and Ahearn J.S. , to appear in J. Vac. Sci. and Technol. July/Aug. 1989.

3. MBE Growth of GaAs on Si (100)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3