Author:
Zhang X. F.,Miller D. J.,Talvacchio J.
Abstract
Changing the film deposition rate is shown to be one way to influence the meandering configurations of grain boundaries (GB's) formed in YBa2Cu3Oy (YBCO) bicrystal thin films. The magnitude and wavelength of the meander in YBCO films deposited at two different rates have been characterized by transmission electron microscopy (TEM) and statistically quantified. It has been found that the meander becomes more uniform and considerably less rough in films deposited at lower rates compared to that observed in films deposited at higher rates. A mechanism for the formation of the meandering GB is proposed based on heterogeneous nucleation and three-dimensional (3D) island growth together with overgrowth of the YBCO films across the substrate grain boundary. The different island sizes and tendency for overgrowth induced by changing the film deposition rate are believed to play important roles in controlling the meandering GB configuration. The possible effects of meandering configurations on transport properties are discussed.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献