High Performance A–Si Solar Cells and Narrow Bandgap Materials

Author:

Nakano Shoichi,Kishi Yasuo,Ohnishi Michitoshi,Tsuda Shinya,Shibuya Hisashi,Nakamura Noboru,Hishikawa Yoshihiro,Tarui Hisaki,Takahama Tsuyoshi,Kuwano Yukinori

Abstract

AbstractHigh performance a-Si solar cells were developed. A conversion efficiency of 11.5% was achieved for a textured TCO/p-SiC/in/Ag structure with a size of 1 cm2 using the high quality i-layer fabricated by a new consecutive, separated reaction chamber apparatus. A conversion efficiency of 9.0% was obtained with a size of 10cm × 10cm. A high quality a-SiGe:H:F, which is a new narrow bandgap material for a-Si solar cells, was fabricated by a glow discharge decomposition of SiF4 + GeF4 + H2.A photo-CVD method was investigated in order to improve the interface properties of a–Si solar cells. A conversion efficiency of 11.0% was obtained with a solar cell in which the p-layer is fabricated by the photo-CVD method. a-SiGe:H films were fabricated by the photo-CVD method for the first time as a narrow bandgap material for multi-bandgap a-Si solar cells.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference4 articles.

1. Optical properties of amorphous SixGe1−x(H) alloys prepared by R.F. Glow discharge

2. [2] Hamakawa Y. :17th IEEE Photovoltaic Specialists Conf. (1984) 63

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3