Effect of boron on the continuous cooling transformation kinetics in a low carbon advanced ultra-high strength steel (A-UHSS)

Author:

Altamirano G.,Mejía I.,Hernández-Expósito A.,Cabrera J. M.

Abstract

ABSTRACTThe aim of the present research work is to investigate the influence of B addition on the phase transformation kinetics under continuous cooling conditions. In order to perform this study, the behavior of two low carbon advanced ultra-high strength steels (A-UHSS) is analyzed during dilatometry tests over the cooling rate range of 0.1-200°C/s. The start and finish points of the austenite transformation are identified from the dilatation curves and then the continuous cooling transformation (CCT) diagrams are constructed. These diagrams are verified by microstructural characterization and Vickers micro-hardness. In general, results revealed that for slower cooling rates (0.1-0.5 °C/s) the present phases are mainly ferritic-pearlitic (F+P) structures. By contrast, a mixture of bainitic-martensitic structures predominates at higher cooling rates (50-200°C/s). On the other hand, CCT diagrams show that B addition delays the decomposition kinetics of austenite to ferrite, thereby promoting the formation of bainitic-martensitic structures. In the case of B microalloyed steel, the CCT curve is displaced to the right, increasing the hardenability. These results are associated with the ability of B atoms to segregate towards austenitic grain boundaries, which reduce the preferential sites for nucleation and development of F+P structures.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3