Point Contact Admittance Spectroscopy of Thin Film Solar Cells

Author:

Vasko Anthony,Wieland Kristopher,Karpov Victor

Abstract

ABSTRACTWe present the new characterization technique of multi-dimensional admittance measurements. In standard admittance measurements, a semiconductor device is probed in the transverse dimension, between flat plate contacts. We extend such measurements to distributed, possibly non-uniform solar cells where one of the two contacts has very small (point-like) dimensions. As a result, both the real and displacement currents spread into lateral directions while flowing between the electrodes. Correspondingly, the probing electric field may result in contact voltages that are laterally not equipotential. The spatial voltage distribution will depend on the probing DC bias and AC frequency. The resulting measurement will give information about the system’s lump parameters, such as open circuit voltage, sheet and shunt resistances, as well as the presence and location of shunts. Understanding of the measurement is developed through intuitive and analytic models. Numerical models, utilizing finite element circuits, are used to verify the analytic results, and also may be directly compared to or used to fit experimental data. While our focus is on introducing the physical theory, early experimental results demonstrating spatial scaling are shown.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3