Author:
Kreiger M.,Anzalone G. C.,Mulder M. L.,Glover A.,Pearce J. M
Abstract
ABSTRACTAlthough the environmental benefits of recycling plastics are well established and most geographic locations within the U.S. offer some plastic recycling, recycling rates are often low. Low recycling rates are often observed in conventional centralized recycling plants due to the challenge of collection and transportation for high-volume low-weight polymers. The recycling rates decline further when low population density, rural and relatively isolated communities are investigated because of the distance to recycling centers makes recycling difficult and both economically and energetically inefficient. The recent development of a class of open source hardware tools (e.g. RecycleBots) able to convert post-consumer plastic waste to polymer filament for 3-D printing offer a means to increase recycling rates by enabling distributed recycling. In addition, to reducing the amount of plastic disposed of in landfills, distributed recycling may also provide low-income families a means to supplement their income with domestic production of small plastic goods. This study investigates the environmental impacts of polymer recycling. A life-cycle analysis (LCA) for centralized plastic recycling is compared to the implementation of distributed recycling in rural areas. Environmental impact of both recycling scenarios is quantified in terms of energy use per unit mass of recycled plastic. A sensitivity analysis is used to determine the environmental impacts of both systems as a function of distance to recycling centers. The results of this LCA study indicate that distributed recycling of HDPE for rural regions is energetically favorable to either using virgin resin or conventional recycling processes. This study indicates that the technical progress in solar photovoltaic devices, open-source 3-D printing and polymer filament extrusion have made distributed polymer recycling and upcycling technically viable.
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes
2. 3. Lotfi A. , Polymer Recycling. WWW document, (http://www.lotfi.net/recycle/plastic.html).
3. 25. Hammond G. , Jones C. . Inventory of carbon & energy (ICE) Version 1.6a, Bath U. (2008).
4. 6. U.S. National Park Service. Time it takes for garbage to decompose in the environment. WWW document http://des.nh.gov/organization/divisions/water/wmb/coastal/trash/documents/marine_debris.pdf ) .
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献