Nanostructured zinc sulphide phosphors

Author:

Vacassy R.,Scholz S. M.,Dutta J.,Hofmann H.,Plummer C. J. G.,Carrot G.,Hilborn J.,Akinc M.

Abstract

ABSTRACTZinc sulphide (ZnS) particles are efficient phosphors for application in flat-panel displays. Spherical ZnS particles were prepared by precipitation from a homogeneous solution. Nanoparticles of 20 to 40 nm having a very narrow size distribution could be synthesized by using complexing chelates such as acetate and acetylacetonate. Complexing of the precipitating cation with the anions present in the system lead to a limited concentration of free cations in the solution. This strongly influences the kinetics of the primary particle agglomeration/growth, resulting in nanometer-sized ZnS particles. Nanostructured ZnS synthesized in this way are polycrystalline particles composed of crystallites of 5–10 nm. The synthesis of very small, non-agglomerated, nanocrystalline particles in the 5–10 nm size range was also possible, making use of a strong complexing ligand (thioglycerol) during the synthesis. The synthesis of controlled monosized ZnS particles will be presented and discussed. The photoluminescence characteristics of ZnS make this material a suitable candidate as phosphor for application in low voltage display technology. The effect of Mn2+ doping on the luminescence characteristics of ZnS will also be discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. 14. Isobe T. , Igarashi T. and Senna M. , in Proceedings of the1996 Fall Meeting of the Materials Research Society, Boston, MA, in press.

2. Spectroscopy of bound excitons in cubic ZnS at moderate to high excitation densities

3. 11. Jongen N. , Lemaître J. , Bowen P. and Hofmann H. , in Proceedings of the 5th World Congress of Chemical Engineering 5, 2nd International Particle Technology Forum, Edited by the The American Institute of Chemical Engineers (San Diego, CA, 1996) p.31.

4. Highly Monodisperse Quantum Sized CdS Particles by Size Selective Precipitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3