Study on the nature of the electrochemically synthesized hard Fe–15.4 mass% Ni–0.70 mass% C alloy film

Author:

Haseeb A. S. M. A.,Hayashi Y.,Masuda M.,Arita M.

Abstract

Electrochemical synthesis of hard Fe–15.4 mass% Ni–0.70 mass% C alloy film with a hardness 750 HV was carried out from sulfate-based bath containing a small amount of citric acid and L-ascorbic acid. The nature of the alloy was investigated by different characterization techniques including x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Mössbauer spectroscopy, differential scanning calorimetry, and magnetic measurements. The decomposition behavior of the alloy was also studied and compared with that of thermally prepared martensite. It was found that the electrochemically deposited Fe–Ni–C alloy exists in a state that is ahead of the freshly quenched state of martensite. It is suggested that the state of the electrochemically deposited Fe–15.4 mass% Ni–0.70 mass% C alloy corresponds to the state of thermal martensite, which had been heated to the preprecipitation stage of tempering.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3