Author:
Sperling Evan A.,Banerjee Rajarshi,Thompson Gregory B.,Fain Jason P.,Anderson Peter M.,Fraser Hamish L.
Abstract
The crystallographic texture, orientation relationships, coherency stress, and thermal stability of sputter-deposited Ni/Ni3Al multilayered thin films were studied as a function of bilayer period (Λ) as well as processing parameters such as substrate type, deposition temperature, and prebake conditions. Deposition onto oxidized Si or single-crystal Cu(001), NaCl(001), or KBr(001) substrates near room temperature produces multilayers with a [111] crystallographic texture along the Ni/Ni3Al interface normal and a disordered face-centered cubic structure for the Ni3Al phase. In contrast, deposition at 673 K onto NaCl(001) or KBr(001) substrates that are prebaked in vacuum at 693 K produces a chemically ordered L12 structure for the Ni3Al phase and (001) epitaxial growth. X-ray diffraction measurements of (001) multilayers with equal volume fraction of Ni and Ni3Al reveals a transition from a nearly incoherent state at Λ=40 nm to a semicoherent one at Λ 40 nm. Remarkably, (001) multilayers were observed to solutionize at 1373 K, which is approximately 100 K below that predicted by the Ni–Al phase diagram.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献