Preparation of Nanocrystalline Silicon by Pulsed Plasma Processing

Author:

Oda S.,Otobe M.

Abstract

ABSTRACTWe have proposed digital plasma processing for the fabrication of silicon quantum dots with grain size less than l0nm. By using the pulsed gas supply of SiH4 and H2 in the very-high frequency (VHF) plasma, we have clarified the role of atomic hydrogen in the nucleation, crystallization of nanocrystalline Si (nc-Si) as well as in the selective etching of amorphous Si to nc-Si. Recently, we have prepared nc-Si by employing an ultra-high-vacuum (UHV) chamber equipped with VHF plasma cells of SiH4 and H2. Flux rate of Si cluster depends significantly on the pressure of the plasma cell and VHF power. Spherical shaped nc-Si clusters less than 6nm in diameter have been observed by transmission electron microscopy (TEM). Infrared absorption measurements have clarified that the surface of nc-Si is covered by hydrogen. In an attempt to control the position of nuclei, we have prepared nc-Si on SiO2 with micro trenches, 40nm wide and 20nm deep, fabricated by electron beam exposure and electron cyclotron resonance (ECR) etching. It has been revealed by TEM observation that nc-Si are formed preferentially along micro trenches.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3