Atomic structure, electrical properties, and infrared range optical properties of diamondlike carbon films containing foreign atoms prepared by pulsed laser deposition

Author:

Wei Q.,Sankar J.,Sharma A. K.,Oktyabrsky S.,Narayan J.,Narayan R. J.

Abstract

We investigated the atomic structure, electrical, and infrared range optical properties of diamondlike carbon (DLC) films containing alloy atoms (Cu, Ti, or Si) prepared by pulsed laser deposition. Radial distribution function (RDF) analysis of these films showed that they are largely sp3 bonded. Both pure DLC and DLC + Cu films form a Schottky barrier with the measuring probe, whereas DLC + Ti films behave like a linear resistor. Pure DLC films and those containing Cu exhibit p-type conduction, and those containing Ti and Si have n-type conduction. Photon-induced conduction is observed for pure DLC, and the mechanism is discussed in terms of low-density gap states of highly tetrahedral DLC. Our results are consistent with relative absence of gap states in pure DLC, in accordance with theoretical prediction by Drabold et al.37 Temperature dependence of conductivity of DLC + Cu shows a behavior σ exp(−B/T1/2), instead of the T−1/4 law (Mott–Davis law). Contributions from band-to-band transitions, free carriers, and phonons to the emissivity spectrum are clearly identified in pure DLC films. The amorphous state introduces a large contribution from localized states. Incorporation of a small amount of Si in the DLC does not change the general feature of emissivity spectrum but enhances the contribution from the localized states. Cu and Ti both enhance the free carrier and the localized state contributions and make the films a black body.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3