Enhanced hydrogen sorption capacities and kinetics of Mg2Ni alloys by ball-milling with carbon and Pd coating

Author:

Janot R.,Aymard L.,Rougier A.,Nazri G. A.,Tarascon J. M.

Abstract

Solid-state hydrogen storage alloys are becoming a practical method to transport and utilize hydrogen as fuel for various technologies. In this paper, the kinetics and capacity of hydrogen desorption from Mg-based alloys have markedly been enhanced by tuning the surface composition of alloy particles. Mg2Ni–Ct, x composites (where t refers to the pregrinding time and x to the Brunauer–Emmet–Teller specific surface area) were prepared by ball-milling the alloy in the presence of preground graphite, and Pd-coated Mg2Ni alloy powders were obtained by controlled chemical deposition of Pd on the alloy surface. We have found that the optimization of the pregrinding step of carbon is a determinant factor in enhancing the hydrogen desorption capacity of the Mg2Ni–10 wt.% C10,320 composites to 2.6 wt.% at 150 °C, the maximum performance so far reported on desorption for Mg-based alloys. Such value can even be raised to 2.8 wt.% by applying Pd deposition on the composite.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3