High Resolution X-Ray Diffraction Analysis Of Gallium Nitride Grown On Sapphire By Halide Vapor Phase Epitaxy

Author:

Matyi R. J.,Zhi D.,Perkins N. R.,Horton M. N.,Kuech T. F.

Abstract

AbstractWe report a structural analysis of GaN layers with thicknesses ranging from 10 μm to 250 μm which have been grown on sapphire substrates by halide vapor phase epitaxy (HVPE). The effect of growth rate during HVPE growth has also been examined. The growth was performed using GaCl and ammonia as reactants; growth rates in excess of 90 μm/hr have been achieved. The structural characteristics of these layers have been performed wit'i high resolution x-ray diffractometry. Longitudinal scans parallel to the GaN [0002] direction, transverse scans perpendicular to the [0002], and reciprocal space maps of the total diffracted intensity have been obtained from a variety of GaN layers. The transverse scans typically show broad rocking curves with peak breadths of several hundreds of arcseconds. In contrast, the longitudinal scans (or “θ/2θ scans”) which are sensitive only to strains in the GaN layers (and not their mosaic distributions) showed peak widths that were at least an order of magnitude smaller and in some cases were as narrow as 16 arcseconds. These results suggest that the defect structure of the GaN layers grown by HVPE is dominated by a dislocation-induced mosaic distribution, with the effects of strain in these materials being negligible in comparison.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High resolution x-ray diffraction analyses of GaN/LiGaO2;Journal of Physics D: Applied Physics;1999-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3